

PYGOMAS

pyGOMAS Manual

Version 1.0

2024-02-07

© Carlos Carrascosa, Vicente Julián, Javier Palanca, and Andrés Terrasa, 2024

 2

Table of Contents

1. INTRODUCTION .. 3

2. CAPTURE THE FLAG ... 3

3. AGENTS IN PYGOMAS ... 4

4. THE PYGOMAS ARCHITECTURE .. 5

5. FILES INVOLVED IN A PYGOMAS MATCH .. 8

5.1 MAP FILES .. 8
5.2 AGENT DESCRIPTION FILE ... 10
5.3 AGENT STRATEGY FILE (ASL) ... 11

6. INSTALLING PYGOMAS AND RUNNING A MATCH ... 11

6.1 INSTALL OR USE A XMPP SERVER .. 11
6.2 INSTALL ANACONDA ... 12
6.3 INSTALL THE PYGOMAS ENVIRONMENT ... 12
6.4 DOWNLOAD THE UNITY RENDER EXECUTABLES ... 12
6.5 RUN A PYGOMAS MATCH ... 13

7. DEVELOPING THE STRATEGY OF A TEAM.. 14

7.1 DEFAULT TROOP BEHAVIORS .. 14
7.2 PERCEPTION OF THE ENVIRONMENT... 15
7.3 ACTIONS ON THE ENVIRONMENT ... 16
7.4 AGENT AWARENESS AND TEAMWORK .. 18
7.5 AGENT COMMUNICATION AND COORDINATION ... 20
7.6 ADDING NEW ACTIONS ... 21

ANNEX A. LIST OF PREDEFINED BELIEFS AVAILABLE FOR TROOP AGENTS .. 24

ANNEX B. LIST OF PREDEFINED ACTIONS AVAILABLE FOR TROOP AGENTS .. 25

ANNEX C. INFORMATION AVAILABLE FROM PYTHON CODE TO IMPLEMENT NEW ACTIONS 26

 3

1. INTRODUCTION

pyGOMAS (Game-Oriented Multi-Agent System based on Python) is a gaming simulation platform which

combines a Multi-Agent System (MAS) and a render engine to program Artificial Intelligence (AI) strategies

in the context of well-known games such as Capture the Flag. In a typical pyGOMAS game, two different

teams compete to achieve some goal (e.g., capture the flag), with each team being formed by several

cooperative AI agents. Agents’ strategies are mainly coded in AgentSpeak language, which is based on the

BDI (Belief-Desire-Intention) paradigm. In addition, the pyGOMAS render engine allows spectators to

watch the evolution of the game live, as well as to replay a finished game, in different modes (both 2D

and 3D).

pyGOMAS runs on top of the SPADE MAS platform extended with the BDI plug-in (SPADE-BDI). SPADE is

a MAS platform whose primary purpose is to provide a flexible, simple, and open agent execution

framework. The two main characteristics of the SPADE platform are the extensive and strategic use of the

XMPP standard and its agent model. XMPP is a well-known standard for instant messaging and presence

notification, and it is the core of the transport layer which allows agents to interact with each other in

different ways (send and receive messages, inform each other about their presence status, etc.). On the

other hand, SPADE’s agent model is based on behaviors, which are running patterns encapsulating the

agent’s actions. The code of each agent can be distributed in one or several behaviors, depending on the

way its actions should be executed. And so, there are behaviors for running actions just once, cyclically

(in an endless loop), periodically (every time a pre-defined period is reached), after a timeout, or in a

complex pattern following a finite-state-machine configuration. Actions inside these behaviors are

normally coded in Python, which is the reference programming language for SPADE.

However, pyGOMAS uses the SPADE-BDI extension, which offers agents an additional, BDI-like behavior

which is coded in AgentSpeak language. For the sake of simplicity, in pyGOMAS the programming of each

agent will be restricted to this BDI behavior only, and so, the agent’s strategy to win the game will be

programmed in AgentSpeak. But, as explained later, this code can also be extended by invoking custom

actions programmed in Python, for further functionality or convenience.

2. CAPTURE THE FLAG

In pyGOMAS, the classic game of Capture the Flag takes on a new twist within a World War II setting, with

only one flag defended by one of the opposing teams - the Allies or the Axis powers. The objective remains

straightforward: the assaulting team aims to breach enemy lines and capture the flag, while the defending

team strives to protect it. However, in pyGOMAS, there's a time limit; if the assaulting team fails to

capture the flag within this period, the defending team secures victory.

Set against the backdrop of the WWII theater, pyGOMAS offers players an immersive simulation

environment where strategic decisions can alter the course of history. As members of either the Allied or

Axis forces, AI agents must employ tactical strategies and teamwork to outmaneuver opponents. The

game emphasizes swift and decisive action, blending historical significance with intense competition as

agents navigate the battlefield, utilizing coordinated assaults and defensive tactics to achieve their

objectives. With each match, pyGOMAS plunges players into the heart of wartime conflict, where victory

hinges on skillful maneuvering and strategic prowess.

To clarify the rest of the manual, some basic definitions are now presented:

 4

• Agent. A BDI-like software agent autonomously playing the Capture-the-Flag game, according to

its own goals and the goals of its team. Agents can interact with the environment (battlefield) by

means of perceptions and actions, and they can communicate and coordinate with the rest of

the agents in their own team. pyGOMAS incorporates three basic types of agents for each team:

Soldier, Medic and FieldOps. New types of agents can also be created if necessary, according to

the team’s strategy.

• System Agent. An internal, SPADE agent provided by pyGOMAS to support the execution of the

game. System agents are totally independent of, and do not affect in any way, the strategy of the

playing agents. The system agents’ code is off limits and cannot be modified.

• Team. A group of playing agents with a common goal of either capturing (Allies) or defending

(Axis) the flag. A team can lose members while playing the game since agents can be killed in

action if shot by other agents (belonging to the opposite team, or to their own).

• Match. A time-controlled contest in which two teams (Allies and Axis) compete in the Capture-

the-Flag game. In each match, one of the two teams always wins: if the Allies team can capture

the flag and carry it to their base within the established maximum time, they win the match.

Otherwise, the Axis team wins.

• Pack. A token present in the environment (battlefield) which can be picked up by a playing agent

if the agent passes exactly over the pack’s location. There are three types of packs: the flag, medic

packs and ammo packs.

• Player. A person, or group of persons, which programs the strategy of a team of agents playing

in pyGOMAS. Normally, a player will develop the agents’ code for both teams (Allies and Axis)

since the competition against any other player usually involves playing one match as Allies and

another one as Axis. The player must provide the code of their agents in advance of a match.

Once the match is started, the agents play in a totally autonomous way, with no interaction of

any kind with the player.

• Spectator. A person watching a live (or already played) match through the render engine of

pyGOMAS.

So, the purpose of pyGOMAS is to provide a simulated battlefield where two teams of agents (Allies and

Axis) face each other in a simplified version of the Capture the Flag game, where there is only one flag to

capture and a limited time to do so. The strategies of both teams can be developed by a single player or

by two different players. In the latter case, pyGOMAS offers an engaging competition platform for

developing agent strategies.

3. AGENTS IN PYGOMAS

This section describes first the predefined types of agents provided by pyGOMAS (both system agents and

regular, playing agents). Then, it discusses the possibility of creating new types to better support the

strategy designed by a player, if necessary.

The pyGOMAS incorporates three types of system agents which globally support the game on top of the

functionality of the SPADE platform:

• Manager. This is the system agent which controls the main aspects of the game, including the

interactions between the playing agents and the environment (battlefield) and the interface with

 5

• the render engine (viewer). As explained below, the manager can interact with different types of

render engines, both 2D and 3D.

• Service. The purpose of this system agent is to offer a yellow pages service to the playing agents.

The yellow pages inform about the catalogue of services provided by each agent to its fellow

agents in the team. There are some predefined registered services for each agent, and every

agent may register new, ad-hoc services, specific to its strategy and role in the team. When an

agent dies, the Service agent automatically removes all its services (predefined or otherwise)

from the catalogue.

• Pack. Packs are modeled as system agents which have a location in the environment, and they

can interact with the playing agents. There are three types of pack (system) agents: medic packs,

which add health to agents when picked up; ammo packs, which add ammunition to agents when

picked up; and objective packs, which represent the goal of the game (in this case, the flag).

During the game, medic and ammo packs can be dynamically created and dropped on the

battlefield for agents to pick them up, and they can also be destroyed. However, there is only

one flag which exists throughout the game, and it cannot be destroyed.

Regarding the playing agents, pyGOMAS offers three basic “troop” agent types to both teams, each of

which with a particular role within the team. In terms of code, the following three agent classes inherit

from a SPADE agent class named BDITroop:

• Soldier. This is the most basic troop agent role, providing a service called “backup” to its

teammates. This service implements the strategy of helping the rest of teammates to fulfill the

team’s goal (either capture or defend the flag). Typical actions of this role include coordinate

with fellow troop agents and shoot the enemy troops. The soldier's shots are more damaging

than those of the other roles.

• Medic. Agents playing this role provide a service called “medic” and they can produce medic

packs. Such packs can cure (increase the health level of) the troop agents which pick them up.

• FieldOps. Agents playing this role provide a service called “ammo” and they can produce ammo

packs. Such packs can increase the amount of ammo available on the troop agents which pick

them up.

As mentioned above, the code of such troop agents is developed by following the BDI paradigm and

programmed in AgentSpeak language. pyGOMAS provides a very basic code for each of them, as a sample

of how to program a trivial strategy involving the three types of agents. Players can use this sample code

as a starting point to implement more sophisticated schemes to win the game.

In addition, pyGOMAS also allows players to incorporate new types of playing (troop) agents to their

teams, in case of strategies that would need other, specialized roles. For example, a team may divide its

troop agents in different platoons, each one commanded by an officer agent (lieutenant), to deploy a

complex battle strategy. In turn, such lieutenants could be coordinated by a captain agent, and so on.

4. THE PYGOMAS ARCHITECTURE

In general terms, pyGOMAS is internally structured in two separate subsystems: a SPADE application with

several agents running on top of it, which is responsible for controlling and playing the game; and a viewer

or render engine, which is responsible for displaying the evolution of the game on the battlefield during

a match (or later). This architecture is shown in Figure 1.

 6

Figure 1. The pyGOMAS Architecture

Both subsystems are communicated by means of a well-defined set of messages. In particular, the

Manager agent in the SPADE subsystem sends all the relevant movements of agents in the battlefield to

the engine, which in turn, displays them.

The design decision of separating these two subsystems was made for three main reasons. Firstly, because

the render, as a typical graphical application, may produce heavy computational costs for some (typically

short) periods of time, which could potentially affect the SPADE subsystem. Secondly, because it facilitates

the development of alternative render engines. And thirdly because this separation allows both

subsystems to run independently. In a typical execution layout, both subsystems are run, and spectators

can watch the game live. But a match can also be played without a render engine, in which case the

movement information generated by the Manager agent is stored as a log file. In this “blind” mode, only

the result (the winning team) is shown at the end of the match. Conversely, a render engine can be

executed stand-alone to “replay” a previously played game, simply by being provided with the

corresponding log file of the match.

As explained in the previous section, inside the SPADE subsystem there are four classes of SPADE agents:

Pack, Manager, Service and BDITroop, with this latter specialized in the three initial types of troop agents

available for each team (Soldier, Medic and FieldOps). Regarding the render engine subsystem, there are

currently three different render engines available in pyGOMAS. From the simplest to the most

sophisticated, the first one would be the text engine, which displays the battlefield and the evolution of

the game in a text console. Figure 2 shows this engine for an ongoing match. In this visualization, the Allies

and Axis bases are depicted as a red and blue big box, respectively. Accordingly, Allies and Axis soldiers

are represented by asterisks with blue or red background, while the flag is shown as an “F” with yellow

background. As can be seen in the figure, the battlefield also features some obstacles which soldiers

cannot go through, as it will be explained later.

 7

Figure 2. The pyGOMAS text-based render engine

The next render engine is based on Python’s Pygame library and has a similar 2D representation featuring

a zenithal view, but with greater precision and much more detail. This engine, shown in Figure 3 also

depicts the base of both teams as big boxes (red or blue). The position of each agent in the battlefield is

here enhanced with other information as the soldier’s name or its “vision cone”, depicting exactly the

part of the battlefield the soldier can perceive at each moment.

Figure 3. The pyGOMAS render engine

Finally, pyGOMAS also includes a 3D render engine based on Unity, in which the spectator can change the

point of view and soldiers are depicted as humanoids. Figure 4 presents two pictures of this engine during

a match. In the left side, there is an aerial view of the battlefield, while the right side presents a much

 8

closer view of three advancing soldiers. In this latter picture, it can be seen that the Unity engine increases

the amount of data displayed during the match, including for example the current amount of health and

ammo of each soldier, which are represented as bars above the soldier.

Figure 4. The Unity render engine (left: general view; right: detailed view of three troops)

5. FILES INVOLVED IN A PYGOMAS MATCH

Each match in pyGOMAS requires some specific files, which are described in this section. They are mainly

related to the description of the battlefield and the agents involved in the match, and the strategies

implemented for such agents. The next subsections describe these files.

5.1 MAP FILES

The environment where the troop agents play (i.e., the battlefield) is described in some “map” files,

describing the shape and size of the battlefield, the internal walls or obstacles inside it, and some

configuration parameters relevant to the playing agents and the render engine.

Each match is played in a particular map, among the ones available. In particular, map files are stored in

a folder called maps in the distribution folder. In the maps folder, each map has its own subfolder called

map_XX, with XX being the map number.

Inside the folder of a particular map (e.g., map_04), there are two files:

1. map_04_cost.txt. This file contains a text representation of the shape of the environment. This

includes the external walls (boundaries) of the map and may also include some internal walls or

obstacles (solid objects that the troop agents cannot go through). The bitmap uses the character

‘*’ to indicate a solid wall. The following is an example of the contents of this file:

 9

 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * ** **
 * * *
 * * * *
 * * * *
 * * * *
 * ******** ** *
 * * ***** *
 * * * *
 * *** ****** * *
 * * *
 * *
 * * *

2. map_04.txt. This file contains the values of some configuration parameters which are relevant

to either the playing agents or the render engine, and which complements the information of

the previous file. The configuration parameters included in this file are:

• pGOMAS_OBJECTIVE: initial coordinates of the flag.

• pGOMAS_SPAWN_ALLIED: coordinates of the Allies base.

• pGOMAS_SPAWN_AXIS: coordinates of the AXIS base.

• pGOMAS_COST_MAP: size and filename of the cost file.

The following is an example of the contents of this file:

[pGOMAS]
pGOMAS_OBJECTIVE: 28 28
pGOMAS_SPAWN_ALLIED: 2 28 4 30
pGOMAS_SPAWN_AXIS: 20 28 22 30
pGOMAS_COST_MAP: 32 32 map_04_cost.txt
[pGOMAS]

In the virtual environment, the position of an agent (a troop, a pack, etc.) or a fixed element (a wall) is

expressed in (x, y, z) coordinates, but in all maps, the “y” component (height) is always 0. So, in the file

described before, the position of the flag is a (28, 0, 28), and the position for the Axis base is a square

from coordinate (20, 0, 28) to coordinate (22, 0, 30).

 10

Finally, the size of the map expressed in the pGOMAS_COST_MAP option indicates that the map size will be

32 x 32, corresponding to the shape of the map depicted in the map_04_cost.txt file.

5.2 AGENT DESCRIPTION FILE

The description of the agents playing a particular match is contained in a JSON file which can be freely

named, since it is specified in the command line when pyGOMAS is instructed to start a match. For

example, let us suppose that the file is named myagents.json.

The typical content of this description or configuration file would be:

{
 "host": "xmpp.server.address",
 "manager": "manager_mylogin",
 "service": "service_mylogin",
 "axis": [
 {
 "rank": "BDIMedic",
 "name": "medic_axis_mylogin",
 "password": "secret",
 "amount": 3
 }
],
 "allied": [
 {
 "rank": "BDISoldier",
 "name": "soldier_allied_mylogin",
 "password": "secret",
 "amount": 3
 }
]
}

Where:

• host is the DNS name of the XMPP server running the SPADE agents (please remember to change

xmpp.server.address with the actual address of your XMPP server).

• manager is the name of the Manager agent running in SPADE for the match.

• service is the name of the Service agent running in SPADE for the match.

• allied contains the list of the troop agents for the Allied team. The elements inside are:

o rank is the type of troop of the agent (BDISoldier, BDIMedic, or BDIFieldOps)

o name is the name of the corresponding agent in SPADE. SPADE registers this name in the

XMPP server, and so, it must be unique within the registered users in the server.

o password is the password of the agent in the XMPP server.

o asl is an optional parameter that indicates the file containing the AgentSpeak code of

the agent (see Subsection 5.3 below).

o amount is an optional parameter that indicates the number of troop agents of this type

that will be created for the match (all sharing the same AgentSpeak code).

• axis contains the list of the troop agents for the Axis team. It features the same elements than

the allied option before.

So, the configuration file above would create three troop agents (all medic) for the Axis team, and three

troop agents (all soldiers) for the Allied team. The code of these agents would be expected in the default

filenames reserved for each type of troop, as described in the next section.

 11

5.3 AGENT STRATEGY FILE (ASL)

Each playing (troop) agent requires a file containing the AgentSpeak (or ASL) code with its strategy, whose

filename can be specified in the “asl” property in the JSON configuration file described above. These files

are placed by default under the ASL folder of the pyGOMAS distribution.

If the ASL code file of a particular troop agent is not specified in the JSON file, pyGOMAS assumes the

corresponding code is in some default filename. Depending on the type of the troop agent, such default

files are: bdisoldier.asl, bdimedic.asl, and bdifieldop.asl.

pyGOMAS provides the players with some very basic strategy for each type of troop in such default files,

which can be used to directly play a pyGOMAS match right after installing it, or as a default (poor) strategy

to play against, as a player develops more sophisticated behaviors for the troops. You can check these

files in: https://github.com/javipalanca/pygomas/tree/master/pygomas/ASL.

Section 7 below explains the main features of the ASL code in pyGOMAS, including the predefined beliefs

and actions available for the troop agents. An ASL manual compatible with SPADE BDI can be found in:

https://github.com/javipalanca/spade_bdi/blob/master/docs/usage.rst.

6. INSTALLING PYGOMAS AND RUNNING A MATCH

This section describes, step by step, how to install and run the pyGOMAS environment in your system. It

should work in any recent version of Windows, Linux or MacOS since the software it is based on can be

installed in any of them.

The main steps for installing pyGOMAS are: (1) Install/configure a XMPP server, (2) Install Anaconda, (3)

Install pyGOMAS, and (4) Download the Unity render (this is optional).

The next subsections describe each step, and then a final one explains how to run matches in the

environment.

6.1 INSTALL OR USE A XMPP SERVER

Any installation of pyGOMAS requires the use of the SPADE middleware, which in turn needs a XMPP

server. This may be a standard XMPP server, running independently from pyGOMAS, or a dedicated server

for SPADE/pyGOMAS. This section explains both possibilities.

If you are going to use a XMPP server already installed for any other use, this server must be accessible

through the network from the computer(s) you are going to run the pyGOMAS environment (please check

that all the required ports are not cut by any firewall). In addition, the server needs to have the automatic

registration feature activated.

If you are installing your own XMPP server:

A. For Linux or MacOS systems, the recommended XMPP server is prosody (https://prosody.im).

After the installation, you need to turn on the in-band register option in the configuration file

prosody.cfg.lua, by setting the following option:

allow_registration=true

https://github.com/javipalanca/pygomas/tree/master/pygomas/ASL
https://github.com/javipalanca/spade_bdi/blob/master/docs/usage.rst
https://prosody.im/

 12

B. For Windows systems, the recommended XMPP server is openfire

(https://www.igniterealtime.org/projects/openfire). In this case, the installation steps are

described in the web, and the automatic registration is already activated. During the installation,

it is important to set the server’s name as “localhost” and the internal database as the storage

system.

6.2 INSTALL ANACONDA

We recommend the use of a virtual environment to install and execute pyGOMAS. In the rest of this

manual, we consider that pyGOMAS is installed in Anaconda environment.

To install Anaconda, you just need to find the download the distribution for your operating system, from

https://www.anaconda.com/download, and follow the installation steps.

6.3 INSTALL THE PYGOMAS ENVIRONMENT

The installation of pyGOMAS is performed inside an Anaconda environment with a base of Python version

3.9.

Depending on the system you have:

A. In Windows systems, the steps are the following:

1) In the Anaconda graphical tool, create a new environment (with Python 3.9).

2) Once created, open a terminal from the environment and run:

$ pip install windows_curses

$ pip install pygomas

B. In Linux or MacOS systems:

1) Open a terminal and create a Python 3.9 Anaconda environment:

$ conda create -n pygomas python=3.9

2) Activate the environment:

$ conda activate pygomas

3) Install pyGOMAS:

(pygomas)$ pip install pygomas

6.4 DOWNLOAD THE UNITY RENDER EXECUTABLES

If you want to play a pyGOMAS match and visualize it with the 3D Unity render, you will need to download

it first. There are three executable files, one for each OS (Windows, Linux and MacOS).

These executable files can be downloaded from the GitHub page of pyGOMAS:

https://www.igniterealtime.org/projects/openfire
https://www.anaconda.com/download

 13

• Windows version:

https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-render-

v2.0.2.zip

• Linux version: https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-

render-v2.0.2.tar.gz

• MacOS version: https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-

render-v2.0.2.dmg

6.5 RUN A PYGOMAS MATCH

For convenience, the execution of a match in pyGOMAS must be performed from three different

terminals, all of them running the pyGOMAS Anaconda environment created in the last subsection (that

is, open a terminal, then run: conda activate pygomas). These three terminals will execute the Manager

agent, the troop agents, and the render engine, respectively.

In particular:

1. Run the Manager Agent. This agent is executed by running the following:

(pygomas)$ pygomas manager -j <login_manager>@address.xmpp.server

 -m <map> -sj <login_service>@address.xmpp.server

 -np <n_agents>

Where:

• address.xmpp.server is the name (or IP) of the XMPP server you are using. If using

your own local server, it would be localhost (or 127.0.0.1), or the computer name you

used when setting the server up.

• <map> is the name of the folder containing the map files (inside the maps folder).

• <n_agents> is the number of agents playing in the match.

2. Run the troop agents. This is performed by running:

(pygomas)$ pygomas run -g <myagents.json>

Where:

• <myagents.json> is the name of the JSON file containing the description of the playing

(troop) agents. Remember that the files that include the ASL code for the agents are

specified inside the JSON file (or, otherwise, they are assumed to be, by default,

bdisoldier.asl, bdimedic.asl, and bdifieldop.asl).

3. Run the render engine. As explained above, there are three alternative render engines you can

use to view the match:

a) Launch the pyGOMAS render:

(pygomas)$ pygomas render [--ip <IP_address>] [--port <port_number>]

 [--maps <path>] [--log <logfile>]

https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-render-v2.0.2.zip
https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-render-v2.0.2.zip
https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-render-v2.0.2.tar.gz
https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-render-v2.0.2.tar.gz
https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-render-v2.0.2.dmg
https://github.com/javipalanca/pygomas/releases/download/0.5.0/pygomas-render-v2.0.2.dmg

 14

Where:

o --ip <IP_address>: Manager's address to connect the render (default value

is localhost).

o --port <port_number> : Manager's port to connect the render (default value

is 8001).

o --maps <path>: The path to your custom maps directory (default is none).

o --log <filename>: File to save the game (default is match.log).

b) Launch the text-mode pyGOMAS render:

(pygomas)$ pygomas render --text

This option accepts the same arguments as the previous one.

c) Launch the Unity render. In this case, you need to launch the Unity engine and press

“Play”. Once the battlefield is loaded, you need to specify the IP address and port where

the Manager agent is listening. If using a local XMPP server, the default configuration is

correct: 127.0.0.1, port 8001.This option is limited to using the default maps provided

with the pyGOMAS distribution.

7. DEVELOPING THE STRATEGY OF A TEAM

As explained before in this manual, the strategy of a troop agent is specified in AgentSpeak (or ASL)

language, following the BDI paradigm. The ASL code of an agent will contain the beliefs, goals (plans) and

actions that will determine how the agent will respond throughout the game.

As explained below, pyGOMAS has introduced several predefined beliefs for agents to perceive their

environment, and some actions that will allow them to interact with other agents (teammates or

enemies). Also, the list of available actions can be increased since players can add custom actions (written

in Python) that are invoked from the ASL code.

So, from the player’s viewpoint, the programming of an agent’s behavior can use any ASL construct, but

the agent’s interaction with the environment or other agents is limited to the predefined perceptions and

actions provided by pyGOMAS.

The following subsections describe the different aspects relative to the strategy development: the default

behavior set for the troop agents, how to perceive and interact with the environment, how to be aware

of who are the agent’s teammates and to communicate with them, how to add new types of troop agents,

and finally how to add new actions to be called from the ASL code.

7.1 DEFAULT TROOP BEHAVIORS

As explained above, the default team strategy provided by pyGOMAS incorporates three types of troop

agents (soldier, medic and fieldops), each of which providing different services to their fellow teammates

in order to achieve the team’s goal (either capture or defend the flag).

The following is an excerpt of the default ASL code of a soldier (in the Allied team):

 15

//TEAM_ALLIED:

+flag (F): team(100)

 <-

 +exploring;

 .goto(F).

+flag_taken: team(100)

 <-

 .print("TEAM_ALLIED flag_taken");

 ?base(B);

 +returning;

 .goto(B);

 -exploring.

+enemies_in_fov(ID,Type,Angle,Distance,Health,Position)

 <-

 .shoot(3,Position).

In this ASL code, there are three plans for the soldier. The first one instructs the soldier to go to the flag’s

location. The second one would be triggered when the soldier has taken the flag (flag_taken), and in this

case, the instructions are to return to the base’s position. The third one is triggered by the predefined

belief enemies_in_fov, which is inserted periodically by the Manager agent to the agent’s memory. This

belief tells the agent about the position of any enemy which is in the agent’s vision cone, identified by the

“ID” parameter. This belief will be instantiated once for each enemy in the vision cone. The corresponding

action in this case is to shoot 3 times in the direction of the enemy, by means of the predefined action

“.shoot”. These plans and actions are further explained below.

The default behaviors for medic and fieldop troop agents are similar to the one defined for soldiers, but

they also include some private actions such as “.cure” to produce medic packs or “.reload” to produce

ammo packs, respectively.

The full lists of available predefined beliefs and actions are described in the corresponding subsections

below.

7.2 PERCEPTION OF THE ENVIRONMENT

The way troop agents perceive the environment is by some predefined beliefs that are automatically

inserted by the Manager into the agents’ knowledge bases. These beliefs are periodically updated by the

Manager according to the position and status of every agent in the environment.

The list of the main available beliefs available for troop agents is:

● team(X): X is the value of the agent’s team, which can be 100 (Allied) or 200 (Axis).

● base([X,Y,Z]): [X, Y, Z] are the coordinates of the agent’s base.

● flag([X,Y,Z]): [X, Y, Z] are the flag’s initial coordinates. This is a static value; it is not
updated if the flag is taken and carried by a soldier.

● health(X): X is the health level of the agent. By consulting this value, the agent knows the
most updated value of its own health, ranging from 0 to 100.

 16

● ammo(X): X is the ammo level of the agent. By consulting this value, the agent knows the
remaining amount of ammo it has, ranging from 0 to 100.

● position([X,Y,Z]): [X, Y, Z] is the current position of the agent.

● enemies_in_fov(ID, TYPE, ANGLE, DIST, HEALTH, [X,Y,Z]): This belief tells the agent

that an enemy is visible in its view cone, along with the characteristics of the spotted
enemy: its ID, its TYPE, the ANGLE and DISTANCE the enemy stands relative the position
of the agent, the enemy’s remaining HEALTH and its [X, Y, Z] coordinates.

● friends_in_fov(ID, TYPE, ANGLE, DIST, HEALTH, [X,Y,Z]): This belief tells the agent
that a fellow teammate is visible in its view cone. The set of values is equivalent to the
previous belief.

● packs_in_fov(ID, TYPE, ANGLE, DIST, HEALTH, [X,Y,Z]): This belief tells the agent
that a pack is visible in its view cone. In this case, the TYPE corresponds to 1001 (MEDICPACK),
1002 (AMMOPACK), 1003 (FLAG).

The full list of beliefs appears in Annex A.

7.3 ACTIONS ON THE ENVIRONMENT

In the same way than the perceptions (beliefs) described above, pyGOMAS provides the troop agents with

some predefined actions to affect the environment, mostly the situation of the agent itself or the other

troops or packs present in the battlefield.

Some of the main actions related to the environment are the following:

● .goto([X,Y,Z]): This action establishes the [X,Y,Z] coordinates as the agent’s destination
and sets the agent going to that position, by using a JPS algorithm to be able to reach it (this
is an optimized version of a path-planning, A* Algorithm). When the agent finally gets to that
position, that automatically triggers the belief target_reached.

● .stop: Stops the advancing of the troop agent.

● .look_at([X,Y,Z]): Orients the troop agent towards position [X,Y,Z].

● .shoot(N, [X,Y,Z]): Shoots N shots to position [X,Y,Z].

● .cure: Create a medic pack (this is reserved for medic troops).

● .reload: Create a ammo pack (this is reserved for fieldop troops).

Actions .cure and .reload generate a different number of packets depending on an internal

value of the agent (called stamina). This stamina value is consumed each time the agent runs

these actions, and it is replenished periodically (after a given time). This limits the number of

packets which agents can generate and prevents agents from continuously generating packets.

All these actions internally produce communication with the Manager agent in pyGOMAS, which executes

the corresponding actions to the simulated environment and then displays them in the render engine.

For example, the following plan tells a soldier to go and get a pack when it becomes visible (if the pack is

not the flag):

+packs_in_fov(ID,Type,Angle,Distance,Health,Position): Type < 1003

<-

 .goto(Position);

 +goforpack.

 17

It is important to note that there are no specific actions to pick up a pack (medic, ammo, or the flag). A

troop agent always picks up a pack that happens to be in the same position as the agent. So, to get a

medic or ammo pack, a troop agent just needs to go the pack’s position, and then it automatically picks it

up (and the pack disappears, as it is “consumed” by the agent). In the same way, to capture the flag a

troop agent only needs to go to the flag’s position and then keep moving (the flag will move with the

agent), if it is an Allied agent. If it is an Axis agent, the flag is automatically sent back to its initial position

if the agent reaches it.

The following examples show some default behaviors for troop agents regarding the flag, depending on

the team to which the agent belongs. The first example is a simple two-plan strategy for an Allied troop

agent to capture the flag:

+flag (F): team(100)
 <-
 .goto(F).

+target_reached(T): team(100)
 <-
 .print("target_reached");
 -target_reached(T).

The first plan is always triggered initially, since the “flag” belief is one of the default ones, indicating the

initial position of the flag in the battlefield. The second plan would be triggered when the agent gets to

the flag’s position and, if so, the agent would be holding the flag. Please note that the precondition of

both plans is the belief team(100), which is true for the Allied team.

The second example is again a two-plan strategy, but in this case for the Axis team, whose strategy is to

go to a fixed position in the map:

+flag(F): team(200)

 <-

 +tomycorner;

 .goto([20, 0, 20]);

 +myposition([20, 0, 20]).

+target_reached(T): tomycorner

 <-

 -tomycorner;

 .print("I hold the position: ", T);

 -target_reached(T).

In this case, the first plan is triggered when it receives the flag’s position by means of the flag belief which

is normally the starting activity of any soldier. In this case, the plan has the condition that the agent must

belong to the Axis team (due to the team(200) condition). The actions of the plan consist mainly of going

to the upper left corner (coordinates [20, 0,2 0]). The coordinates are determined considering that the

outer wall has a thickness of 10 points (on the map), so the agent will get to the corner without colliding

with the wall. Then, it saves its position in the belief myposition([20, 0, 20]). The second plan would

activate when the agent reaches the desired position (the upper left corner) and stays in that position, as

shown in Figure 5.

 18

Figure 5. Final position reached by an Axis troop agent.

The full list of actions appears in Annex B.

7.4 AGENT AWARENESS AND TEAMWORK

Agents can communicate with their teammates and provide services to them, to be able to better

coordinate and produce a common strategy as a team. This is based on a yellow pages service, explained

in this section, and some communication facilities, explained in the next one.

pyGOMAS proposes a yellow pages service for agents to publish the services they provide, which is carried

out by the Service system agent. This service is the way in which any given agent is aware of who its

teammates are (the ones still alive) and which services they are providing. As explained below, one of the

basic “services” provided is the type of troop each agent is (soldier, medic, or fieldop, or any other custom

type created by the player). Another of these basic services is the team to which the agent belongs (“Axis”

or “Allied”).

The yellow pages mechanism offers an interface of specific actions to the troop agents, to be invoked

from their respective ASL code. These functions can be broadly categorized in two groups:

A. Registration of a service. Whenever a troop agent wants to register a service that it is going to

provide to others, it should invoke the following action:

.register_service(“service_to”)

Where “service_to” is the name of the service the agent wants to register. This action internally

communicates with the Service system agent, which is the one registering the service in its

database.

There are some default services that predefined troop agents register automatically (at

initialization time) and transparently from the ASL code implemented by the players. The

following table summarizes the names of these services:

 Allied Team Axis Team

 Soldier Medic FieldOps Soldier Medic FielOps
Service allied allied allied axis axis axis

backup medic fieldops backup medic fieldops

 19

B. Query the agents providing a service. Whenever a troop agent wants to retrieve the list of agents

providing a particular service, it should invoke the following action:

.get_service(“service_to”)

Where “service_to” is the name of the service the agent wants to know which other agents

provide. This action internally communicates with the Service system agent, which responds

indirectly, by inserting a belief of a certain type into the knowledge base of the querying agent.

In particular, the belief is named precisely: “service_to(L)”, where L is the list of the existing

agents providing that service.

Corresponding to the default services mentioned above, agents may use some predefined query

actions. The following table summarizes such actions and the respective beliefs which would be

inserted as a response:

 List of soldiers in my team List of medics in my team List of fieldops in my team
Query
action

.get_backups .get_medics .get_fieldops

Belief
(response)

myBackups(BK_list) myMedics(M_list) myFieldops(FO_list)

It is important to note that the returned list of all these beliefs always exclude the agent invoking

the querying action, and that the returned list includes only the agents providing the service

which are still alive in the game.

The usual way in ASL to respond to a belief being inserted in the agent’s knowledge base is to provide a

plan that matches the belief. For example, let’s suppose that a troop agent, in one of its plans, execute

the action .get_medics, and that this agent has the following plan in its code:

+myMedics(M)
 <-
 .println("The list of medics in my team is: ", M);
 .length(M, X);
 if (X==0) { .println(“No medics left!!”); }.

This plan would be executed when the Service agent “responds” with the list of medics in the agent’s

team. The agent would print the list to the console and calculate its length. If the list is empty, it would

also print “No medics left!!”. Please note that if the agent executing this plan was itself a medic, its

identifier would not be included in the list (and then, the message should probably be: “No medics left

(but me)!!” :-).

This other example will show how to make use of a new service. Let’s suppose two agents, A and B. Agent

A wants to register a new service named “colonel”, and Agent B wants to know who its Colonel is (and do

something about it). In this scenario, Agent A should execute the following action inside some of its plans:

.register_service(“colonel”)

 20

When Agent B wants to know who the Colonel of the team is, it should execute the action

.get_service(“colonel”), and also have a plan that can be triggered by the response, like the following

one:

+colonel(X)
 <-
 .print("My Colonel is:", X);
 -colonel(_).

Another way of processing the returning answer from the Service agent would be to wait for some time

after querying for the Colonel’s identity, and then check for the answer, all in the same plan:

.get_service(“colonel");

.wait(2000); // wait a reasonable time
if (colonel(X)) { .print("My Colonel is:", X); -colonel(_); }.

7.5 AGENT COMMUNICATION AND COORDINATION

Agents in the same team may coordinate indirectly, by triggering plans when seeing each other, which

causes the insertion of the belief friends_in_fov explained above in Section 7.2. Or else, they can

coordinate directly, by sending and receiving explicit messages, as it is now explained.

When an agent wants to send a message to another one (or to a list of agents), it may use the following

action:

.send(Receiver, Performative, Content)

Where:

• Receiver is the identifier of the agent to which the message is sent. It may be a list of identifiers

(in which case the message will be broadcast to them).

• Performative is the type of message (performative) which gives sense to the message (tell,

untell, achieve, etc.). The list of available performatives are the ones defined by the KQML

language.

• Content is the actual content of the message.

From the viewpoint of the receiving agent (or agents), the message is delivered by inserting the content

as beliefs in their knowledge bases. So, they should have a plan which triggers whenever this type of belief

is inserted.

As an example, let’s suppose that a soldier agent (Agent A) has a plan in which it wants all the medics in

its team to get to its own position (to cure the agent, to regroup, etc.). As a part of this plan, Agent A can

send the medics this message:

…
?position(Pos);
?myMedics(M); // Action .get_medics is supposed to have been called first
.send(M, tell, go_to(Pos));
…

 21

The first instruction queries the agent’s position and stores it in the Pos variable, and the second gets the

list of available medics in the M variable (the agent is supposed to have previously called the .get_medics

action, to have this information available). Finally, the third one sends all the medics a message in which

it informs them about the content “go_to(Pos)”.

For this message to be correctly received and processed, the medics in A1’s team should have a plan that

gets triggered when this content is “received”, that is, inserted as a belief into their respective knowledge

bases, for example:

+go_to(Pos)[source(A)]
 <-
 .println("Go to message received from: ", A, “ to go to: “, Pos);
 +helping;
 .goto(Pos).

In this case, the medics receiving the message would print the message on the console and then go to

Agent A1’s position.

7.6 ADDING NEW ACTIONS

It is possible to extend the list of available actions that troop agents can invoke from the ASL code, by

developing new, custom actions. Such actions are implemented in Python. The implementation must first

extend the agent class corresponding to the type of troop agent to which the new action should be

available. In the most general case, the class to extend would be BDITroop, but it is more usual to extend

the particular classes (soldier, medic or fieldops).

Let’s say we want to add an action called .newaction to be available to a new type of soldier troop

(NewSoldier). For the sake of simplicity, we will assume that this action will not return any value (the case

for returning values will be discussed afterwards). In this case, a new Python file named Soldier.py (for

example) should be created with the following contents:

import json
from pygomas.bdisoldier import BDISoldier
from … // Add any other required imports

class NewSoldier(BDISoldier):

 def add_custom_actions(self, actions):
 super().add_custom_actions(actions)

 @actions.add(".newaction", 0)
 def _newaction(agent, term, intention):

 // Here goes the new action’s code

 yield

The new action will be available for agents which belong to the new type (NewSoldier). So, in this case,

we need to create such agents in the JSON file where the playing agents are defined (see Section 5.2). So,

at least one agent in the JSON specification file should look like this:

 22

{
 "rank": "Soldier.NewSoldier",
 "name": "new_soldier",
 "password": "secret",
 "asl": “newsoldier_code.asl”,
 "amount": 1
}

Where, in the rank option, the new class is specified in format <Python_filename>.<class_name>. And

in the AgentSpeak file referenced by option asl, the code will be able to invoke the .newaction action,

besides all actions available to the regular BDISoldier agent.

Below there is another example featuring an action that makes a fieldops agent move randomly:

import json
import random
…
class BDIDrunkenMonkey(BDIFieldOp):
 def add_custom_actions(self, actions):
 super().add_custom_actions(actions)

 @actions.add(".drunkenMonkey", 0)
 def _drunkenMonkey(agent, term, intention):
 randX = random.randrange(self.map.get_size_x() - 10)
 randZ = random.randrange(self.map.get_size_z() - 10)
 while (self.map.can_walk(randX, randZ) == False):
 randX = random.randrange(self.map.get_size_x() - 10)
 randZ = random.randrange(self.map.get_size_z() - 10)
 self.movement.destination.x = randX
 self.movement.destination.z = randZ
 self.bdi.set_belief(DESTINATION, tuple((randX, 0, randZ),))
 yield

On the other hand, if the new action must return a value (that is, a new function is needed), the steps are

very similar as explained above. There is a small difference in the Python code implementing the function.

If we want to introduce a new function that accepts an integer value and returns another one, the Python

code for extending the BDITroop class should look like this:

import json
from pygomas.bdisoldier import BDISoldier
from … // Add any other required imports

class NewSoldier(BDISoldier):

 def add_custom_actions(self, actions):
 super().add_custom_actions(actions)

 @actions.add_function(".newfunction", (int,))
 def _newfunction(x):

 // Simply return x^2

 return x * x

Having everything else equivalent to the previous example above, now the troop agents of class

NewSoldier could include, in their ASL code, calls to this new function in any plan. For example:

 23

.newfunction(4, Res);

After executing this action, the Res variable would have a value of 16.

In Annex C, there is a list of attributes for troop agents available in Python, which can be used to

implement new actions and functions.

 24

ANNEX A. LIST OF PREDEFINED BELIEFS AVAILABLE FOR TROOP AGENTS

• class(X): X is the class to which the agent belongs:

NONE=0, SOLDIER=1, MEDIC=2, ENGINEER=3, FIELDOPS=4

• enemies_in_fov(ID, TYPE, ANGLE, DIST, HEALTH, [X,Y,Z]): The Troop Agent has seen an
enemy with identifier ID, of type TYPE, at an angle ANGLE, at a distance DIST, with health HEALTH,
and in the position [X, Y, Z].

• friends_in_fov(ID, TYPE, ANGLE, DIST, HEALTH, [X,Y,Z]): The Troop Agent has seen a
teammate.

• packs_in_fov(ID, TYPE, ANGLE, DIST, HEALTH, [X,Y,Z]): The Troop Agent has seen a pack
that can be:

1001 (MEDICPACK), 1002 (AMMOPACK), 1003 (FLAG)

• flag([X,Y,Z]): [X, Y, Z] is the position of the flag.

• heading([X, Y, Z]): the Ag. Troop is oriented towards [X, Y, Z].

• health(X): X is the current health of the agent.

• ammo(X): X is the current ammunition of the agent.

• base([X,Y,Z]): The agent's team base is at [X, Y, Z].

• name(X): X is the name of the agent.

• myMedics([id ...]): List of active team medics.

• myFieldops([id ...]): List of active FieldOps of the team.

• myBackups([id ...]): List of active Soldiers of the team.

• position([X,Y,Z]): [X, Y, Z] is the current position of the agent.

• team(X): the Ag. Troop belongs to team X.

• threshold_health(X): X is the minimum health before launching a special action in response.

• threshold_ammo(X): X is the minimum ammunition before launching a special action in response.

• threshold_shots(X): Maximum limit of simultaneous shots.

• velocity([X,Y,Z]): [X, Y, Z] is the current velocity of the Ag. Troop.

• destination([X,Y,Z]): Destination of the agent : [X,Y,Z].

• pack_taken(TYPE, N): If the agent has picked up a pack of type TYPE (medic or fieldops) and the
amount to increase life/ammo.

• flag_taken: If the agent has picked up the flag.

• target_reached([X, Y, Z]): Added when the agent reaches their destination ([X, Y, Z]).

 25

ANNEX B. LIST OF PREDEFINED ACTIONS AVAILABLE FOR TROOP AGENTS

1 Movement

• .goto([X,Y,Z]): Set [X,Y,Z] as the destination for the agent. Puts the agent troop into motion
towards that place, using a JPS algorithm to move across the terrain.

When the agent reaches the position, the belief target_reached is added.

• .stop: Stop the movement of the agent troop.

• .turn(R): Modify the orientation of the agent troop by an amount (pos. or neg.) R is in radians.
Useful for altering the field of view.

• .look_at([X,Y,Z]): Orient the agent troop towards [X,Y,Z].

• .create_control_points([X,Y,Z],D,N,C): Create a group of N random control points at a given
distance D from a location [X,Y,Z] on the map. The list of points is stored in C. Example: patrol around
the flag.

2 Sending Messages

• .send(Agent, Performative, message_body): its syntax is the same as in ASL.

Example: .send(M, tell, saveme); sends a message to agent M telling them to help.

• .register_service("service_a"): Send a message to the Service Agent to register a specified
service.

• .get_medics: Send a message to the Service Agent requesting the living medics of your team.

• .get_fieldops: Send a message to the Service Agent requesting the living field operators of your
team.

• .get_backups: Send a message to the Service Agent requesting the living soldiers of your team.

• .get_service("service_a"): Send a message to the Service Agent requesting those agents of your
team who offer the service “service_a” and are still alive.

3 Others

• .shoot(N,[X,Y,Z]): Fire N shots at the position [X,Y,Z].

• .cure: Create medicine packs. Only medics can perform this action.

• .reload: Create ammunition packs. Only field operators can perform this action.

 26

ANNEX C. INFORMATION AVAILABLE FROM PYTHON CODE TO IMPLEMENT NEW

ACTIONS

For more detail on the options available for implementing internal actions, you can refer to:

https://github.com/javipalanca/pygomas/

Attributes of AbstractAgent:

• team: Number that identifies the team the agent belongs to

• services: List with the identifiers of services offered by the agent.

Attributes of BDITroop:

• manager: jid of the Manager Agent.

• service: jid of the Service Agent

• is_objective_carried: (true/false) indicates whether the flag is carried or not

• fov_objects: list of objects currently in the agent's field of vision

• aimed_agent: agent that is currently being aimed at (or None)

• health: current health of the agent

• ammo: current ammunition of the agent

• is_fighting: indicates if the agent is currently fighting (True/False)

• is_escaping: indicates if the agent is currently escaping (True/ False)

• Map:

o map.can_walk(X, Z): indicates if the position (X, 0, Z) is walkable (True/False)

o map.allied_base.get_init_x(), map.allied_base.get_init_y(),
map.allied_base.get_init_z()

o map.allied_base.get_end_x(), map.allied_base.get_end_y(),
map.allied_base.get_end_z()

o map.axis_base.get_init_x(), map.axis_base.get_init_y(),
map.axis_base.get_init_z()

o map.axis_base.get_end_x(), map.axis_base.get_end_y(),
map.axis_base.get_end_z()

• velocity_value: current speed of the agent

• destinations: ordered list of the next destinations of the agent.

• Movement:

o movement.velocity.x, movement.velocity.y, movement.velocity.z

o movement.heading.x, movement.heading.y, movement.heading.z

o movement.destination.x, movement.destination.y, movement.destination.z

o movement.position.x, movement.position.y, movement.position.z

• self.soldiers_count = 0

• self.medics_count = 0

• self.engineers_count = 0

• self.fieldops_count = 0

 27

• self.team_count = 0

• threshold = Threshold() Limits of some variables (to trigger some events)

o threshold.health

o threshold.ammo

o threshold.aim

o threshold.shot

	1. Introduction
	2. Capture the Flag
	3. Agents in pyGOMAS
	4. The pyGOMAS Architecture
	5. Files involved in a pyGOMAS match
	5.1 Map files
	5.2 Agent description file
	5.3 AGENT Strategy file (asl)

	6. installing pyGOMAS and running a match
	6.1 Install or use a XMPP server
	6.2 Install Anaconda
	6.3 Install the pyGOMAS environment
	6.4 DOWNLOAD THE UNITY RENDER EXECUTABLES
	6.5 Run a pyGOMAS match

	7. Developing the Strategy of a Team
	7.1 Default Troop Behaviors
	7.2 Perception of the Environment
	7.3 Actions on the Environment
	7.4 Agent Awareness and Teamwork
	7.5 Agent Communication and Coordination
	7.6 Adding New Actions

	Annex A. list of PREDEFINED Beliefs available for Troop Agents
	Annex B. list of PREDEFINED ACTIONS available for Troop Agents
	Annex C. Information available from Python Code to Implement new Actions

